
DOI: 10.2478/auom-2020-0024
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A note on adaptivity in factorized approximate
inverse preconditioning∗

Jǐŕı Kopal, Miroslav Rozložńık, and Miroslav Tůma

Abstract

The problem of solving large-scale systems of linear algebraic equa-
tions arises in a wide range of applications. In many cases the precondi-
tioned iterative method is a method of choice. This paper deals with the
approximate inverse preconditioning AINV/SAINV based on the incom-
plete generalized Gram–Schmidt process. This type of the approximate
inverse preconditioning has been repeatedly used for matrix diagonaliza-
tion in computation of electronic structures but approximating inverses
is of an interest in parallel computations in general. Our approach uses
adaptive dropping of the matrix entries with the control based on the
computed intermediate quantities. Strategy has been introduced as a
way to solve difficult application problems and it is motivated by recent
theoretical results on the loss of orthogonality in the generalized Gram–
Schmidt process. Nevertheless, there are more aspects of the approach
that need to be better understood. The diagonal pivoting based on a
rough estimation of condition numbers of leading principal submatri-
ces can sometimes provide inefficient preconditioners. This short study
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proposes another type of pivoting, namely the pivoting that exploits
incremental condition estimation based on monitoring both direct and
inverse factors of the approximate factorization. Such pivoting remains
rather cheap and it can provide in many cases more reliable precondi-
tioner. Numerical examples from real-world problems, small enough to
enable a full analysis, are used to illustrate the potential gains of the
new approach.

1 Introduction

Solution of many problems in science and engineering reduces to solving sys-
tems of linear algebraic equations

Ax = b, A ∈ Rn×n, x ∈ Rn, b ∈ Rn. (1)

Here, A is the system matrix, x is the vector of unknowns and b is the right-
hand-side vector. We assume that the system matrix A is symmetric and
positive definite (SPD). Problems that arise from discretization of partial dif-
ferential equations usually provide structured systems of linear algebraic equa-
tions that are sparse, but they can be also fully unstructured.

Direct methods, in particular the sparse Cholesky factorization, represent
standard methods of choice. The Cholesky factorization of the matrix can be
written as A = UTU , where U is an upper triangular matrix with positive
diagonal entries. Another class of solution methods is represented by iterative
Krylov subspace methods, e.g., in SPD case the conjugate gradient method,
that can be in many cases very efficient. Nevertheless, in order to increase the
potential of the Krylov subspace methods, a good preconditioner is a must.
There are two main classes of useful preconditioners that are called as direct
and inverse preconditioners. An incomplete variant of the Cholesky factoriza-
tion A ≈ ŨT Ũ may be considered as a standard representative of the class of
direct preconditioners. In this case forward and backward substitution steps
have to be performed in every iteration step. This represents a bottleneck in a
parallel computational environment. Such a drawback can be avoided by us-
ing an inverse preconditioner. Its construction is, in general, more demanding
than for direct preconditioners, but there are applications worth of doing this.
Here we will deal with a specific algorithm that provides the approximate
inverse factorization in the form A ≈ Z̃Z̃T . This type of factorization has
been found useful not only in general parallel iterative solvers but also in solv-
ing generalized eigenvalue problems that arise from computation of electronic
structures. See, for example, [6], [7] and the recent survey [14].

The computational scheme corresponds to the modified variant of the
Gram–Schmidt process with a non-standard inner product induced by the
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matrix A. Dropping in the algorithm that causes incompleteness of the fac-
tors has been originally proposed as the so-called absolute dropping that is
based on a comparison of magnitudes of intermediate quantities with chosen
dropping level, see [5], [2]. The idea of relative dropping is based on compari-
son of magnitudes of intermediate quantities with magnitudes of other entries
that appear in the factorization. In the chosen approximate inverse factor-
ization this has led to the adaptive dropping [12] that is theoretically sound
as explained there. In special cases as for the M-matrices the process reflects
bounds derived for to finite precision computations.

The rest of the paper is organized as follows. First we recall the gener-
alized Gram–Schmidt process that is the algorithm behind the approximate
inverse factorization. This process is combined with a class of permutation
that allows to gain some theoretical insight into the factorization. New ways
to the adaptive dropping are discussed in Section 3. The paper is concluded
by numerical experiments and conclusions.

2 Generalized Gram–Schmidt process

It has been already shown that the generalized Gram–Schmidt process may
provide robust preconditioners [5]. Here we will consider its modified ver-
sion because it provides more favorable results with respect to the compu-
tational cost and stability [2]. Moreover, a column pivoting is used to com-
bine the process with the above-mentioned permutation class. The result-
ing numerical scheme known as the left-looking approach is summarized in
Algorithm 1. The inner product of vectors is denoted here by 〈·, ·〉A. Al-

Algorithm 1 Modified version of the Gram–Schmidt process with column
permutation and with respect to the inner product 〈·, ·〉A

for k := 1→ n do
z
(0)
k := Pek

for j := 1→ k − 1 do

αj,k := 〈z(j−1)
k , zj〉A

z
(j)
k := z

(j−1)
k − αj,kzj

end for
αk,k := ‖z(k−1)

k ‖A
zk := z

(k−1)
k /αk,k

end for

gorithm 1 computes for each k a column zk of the factor Z using the vec-
tor Pek that is A-orthogonalized against the previously computed vectors.
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This process produces the upper triangular matrix U = [αi,j ] and the matrix
Z = [z1, z2, . . . , zn], such that ZU = P , where P is a permutation matrix. If
P = I, Z is also upper triangular. Matrix U represents the Cholesky factor
in the factorization of PTAP = UTU , and matrix Z represents the inverse
factor in the factorization of A−1 = ZZT . As it is shown in [12], an absolutely
necessary step that implies the practical usefulness is the pivoting based on
magnitudes of the diagonal entries of U . The factorized matrix should be sym-
metrically permuted by a matrix permutation P chosen so that the entries of
the factor U satisfy

α1,1 ≥ α2,2 ≥ . . . ≥ αn,n > 0 (2)

α2
i,i ≥

k∑
j=i

α2
j,k, k = i+ 1, . . . , n. (3)

Note that (2) and (3) also imply

αj,j > |αj,k|, j = 1, . . . , n, k = j + 1, . . . , n. (4)

The permutation P in the above mentioned form is not known a priori and
has to be computed on-the-fly. One possibility to get it is to use an additional
computation of the A-orthogonalization coefficients using the classical variant
of the Gram–Schmidt process [10] as proposed in [12]. This is done as follows.

For each k and j = k, . . . , n, the A-norms of the vectors z
(k−1)
j are updated

using the scheme

‖z(k−1)
j ‖2A = ‖z(k−2)

j ‖2A − 〈z
(0)
j , zk−1〉2A. (5)

The new k-th column vector Pek ≡ ei is chosen such that

‖z(k−1)
i ‖A = max

k≤j≤n
‖z(k−1)
j ‖A. (6)

Permutation P is thus obtained implicitly by the application of column pivot-
ing with the criterion (6). As it is well-known, the generalized Gram–Schmidt
process then computes the Cholesky factorization of PTAP and the triangu-
lar factorization of A−1 only in exact arithmetic. The error of the Cholesky
factorization in finite precision arithmetic depends on the choice of the actual
numerical scheme of the generalized Gram–Schmidt process. This is the reason
that we need to distinguish between the modified and classical Gram–Schmidt
schemes. Numerical properties of various implementations of the process in
finite precision arithmetic are analyzed in [13] and [11].

As for the cost of the factorization, we need to distinguish its two compo-
nents. The timings to construct Z are given in Table 2 in [5]. We can see that
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on average the right-looking computation is slower with respect to the drop
tolerance-based incomplete Cholesky factorization with a factor not more than
two. Note that in the cost we need to consider only computation of the factor
Z, the factor U is used only for theoretical purposes. In the dense case there
is the asymptotic equivalence of the LU factorization and this algorithm for
solving even general nonsymmetric systems; see [1], page 22. This means that
typically more complex computation to get Z as mentioned above is caused
mainly by more involved data structures and often larger amount of interme-
diate fill-in in the process. The pivoting is implemented via heaps and it is
therefore very cheap. Incremental condition estimation is cheap as well. As
for applying the factors within the conjugate gradients, this cost is formally
proportional to the number of nonzeros in the factor. In addition, the fact that
the applications is performed by matrix-vector multiplications means that the
performance is highly scalable and avoid parallelization bottlenecks of direct
incomplete factorizations. The overall efficiency may be strongly enhanced by
exploiting block structure of the matrix. Let us mention, although this gets
out of the scope of this paper, that this approximate inverse preconditioning
leads in some applications to a nearly linear scaling of the block-based pre-
conditioned iterative solver with respect to the problem size [6]; see also more
details on an extension to the block approach in [3] and [4].

3 Approximate inverse preconditioning employing adap-
tive dropping

In order to obtain a sufficiently sparse approximate inverse preconditioning,
some quantities have to be dropped, i.e., truncated to zero. In our approximate
computations we use an extra upper tilde notation, e.g., Z̃, z̃k. Without going
into details we start with the result developed in [12]. Based on a theoretical
understanding of the Cholesky factorization of M-matrices, an adaptive drop-
ping parameter (level) has been introduced at k-th step for the computation
of zk, in the form

τk ≤
τ

κ(Ũk)
, (7)

where τ denotes the accuracy baseline chosen for the decomposition and where
Ũk ∈ Rk×k denotes the principal leading submatrix of the matrix Ũ . Symbol
κ(Ũ) denotes the condition number defined by the singular values of Ũ .

In finite precision arithmetic, the quality of the factors U and Z strongly
depends on the departure of orthogonality caused by rounding errors. This
principle can be up to some extent transferred into the incomplete process and
this is the basis for the approach discussed in [12]. The formula (7) points out
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that the growth of κ(Ũk) with respect to k can significantly influence size of
magnitudes of the entries dropped within k-th step.

It has been shown in [12] that the generalized Gram–Schmidt process with
pivoting based on rule (6) combined with a specific adaptive dropping (7)
may lead to successful preconditioner. Here the success of the preconditioner
is studied using criterion that couples the sparsity and convergence of the pre-
conditioned conjugate gradient method. There are several ways to determine
κ(Ũk) exactly or approximately. Some of them are

a) singular value decomposition of Ũk (SVD),

b) fraction of the extremal diagonal entries given by κ(Ũk) ≈ max(diag(Ũk))

min(diag(Ũk))
=

κ(D̃k) or

c) incremental condition estimator (condest(Ũk)).

The singular value decomposition represents the most accurate approach, but
it also the most time demanding method and cannot be typically used in large
sparse computations. Further, the estimates based on the fraction of the two
extremal diagonal entries that we denote using symbol κ(D̃k), where D̃k rep-
resents the diagonal part of Ũk, i.e., D̃k = diag(Ũk) are rather simple and easy
to implement using a heap for the diagonal entries. But this approach is not a
good choice, in general. However, the inequality (2) implies that the eigenval-
ues of the factor Ũk are sorted by their magnitudes. Moreover, the inequality
(3) determines, that column vectors of the trailing principal submatrices of
U having the largest Euclidean norm are concentrated in the first column.
Therefore the estimate of κ(Ũk) based on κ(D̃k) may be for our pivoted algo-
rithm a better choice than for a non-pivoted algorithm. The estimate based on
an incremental condition estimator seems to offer a compromise between the
previously mentioned approaches. We believe that it can represent a method
of choice in some cases and its influence is studied here experimentally. A
specific feature is that the approximate inverse factorization enables to con-
sider the incremental condition estimator in the Euclidean norm from [9] that
exploits both the direct and inverse factors and it is shown to be better than
standard incremental condition estimators. In particular, the authors in [9]
show that one can construct a highly accurate incremental condition number
estimator in this norm. In our case of the approximate inverse factorization,
both factors are known because Ũ−1 ≈ PT Z̃ and we can thus directly use this
estimator. The differences among the mentioned approaches to compute or
estimate κ(Ũk) will be discussed in the subsequent section.
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4 Numerical experiments

We have chosen several problems from the University of Florida collection
[8], see Table 1. In particular, we have chosen smaller problems in order to
compare all the above mentioned methods for computing κ(Ũk). Iteration
counts of the preconditioned CG is denoted as it, an extra upper subscript
determines the type of the approximation of κ(Ũk). Table 1 gives in the col-
umn it the minimum and maximum iteration counts for the three considered
condition number estimates varying values of τ . The values are separated
by a dash as, e.g., min(it) − max(it). We believe that this can better show
advantages and disadvantages of various approaches. In a detail, we study

Table 1: The test matrices.

Matrix Dimension [n] nnz(A) itκ(D̃k) itSVD itcondest(Ũk)

bcsstk08 1 076 12 960 11 – 26 11 – 24 11 – 26
bcsstk09 1 083 18 437 25 – 361 15 – 358 19 – 354
bcsstk10 1 086 20 070 10 – 139 7 – 53 8 – 81
bcsstk19 817 6 853 54 – 500 46 – 338 48 – 408
bcsstk27 1 224 56 126 17 – 171 11 – 97 12 – 126
msc01050 1 050 26 198 52 – 149 35 – 101 44 – 89

nos2 957 4 137 9 – 500 1 – 121 5 – 146
nos3 960 15 884 20 – 246 13 – 119 15 – 171
nos7 729 4 617 8 – 34 6 – 28 7 – 31

the preconditioner behavior in the terms of nnz(Z̃), it, and their connection
to τ . In addition, we are interested in sensitivity of the choice of τ , i.e., how
difficult it is to determine a suitable value of τ that leads to a reasonably fast
convergence with sufficiently sparse factor Z̃. We consider the drop tolerance
baselines τ = 0.01, 0.05, 0.10, 0.20, 0.40, 0.60. Figures 1 and 2 depict the itera-
tion counts of the preconditioned CG as a function of nnz(Z̃) for all matrices
from Table 1. It is easy to see that one of the (favorable) properties of the
all considered approaches is nearly monotonic relation between nnz(Z̃) and
number of iteration of preconditioned CG. The approximation of κ(Ũk) based
on κ(D̃k) represents the best choice for several problems. We can see that, for
example, this approach does not work well for the matrix nos2. Here the dif-

ference between the quantities max(itκ(D̃k)) and min(itκ(D̃k)) is rather large.
In general, finding a suitable value of τ may be sometimes difficult and a trial
and error strategy has to be employed. Good dropping should avoid this as
much as possible. Adaptive dropping based on SVD leads for given values of



A note on adaptivity in factorized approximate inverse preconditioning 156

accuracy τ to the very dense factors Z̃. On the other hand, the corresponding
min(itSVD) is minimal with respect to other approaches and also difference
between max(itSVD) and min(itSVD) is also significantly better than in previ-
ous case. Incremental condition estimator exhibits similar behavior as using
SVD. As one can see these two strategies provide similar results. But since
the incremental condition is cheap it can be considered a method of choice.

5 Summary

Based on the theoretical results developed for the generalized Gram–Schmidt
process in finite precision arithmetic it has been shown that an adaptive drop-
ping rule can be based on the condition number of the leading principal subma-
trices in the Cholesky factor [12]. We have studied three different approaches
to estimate the condition numbers of the leading principal submatrices of the
direct factor and used them in the formula for adaptive dropping. The esti-
mates based on SVD and condest(Ũk) are very close and both lead to robust
preconditioners. One of the most favorable properties of these two approaches
is the observed robustness with respect to the chosen dropping baseline of
the preconditioner. The adaptive dropping rule based on SVD or condest(Ũk)
leads to nearly parameter-free computation of the preconditioner, i.e., precon-
ditioners work well for a wide range of τ . Moreover, condest(Ũk) does not
have any limitation arising from the dimension of the problem. The estimate
based on κ(D̃k) leads for several cases to the most efficient preconditioning,
but trial and error strategy to find a suitable value of τ must be applied for
some problems. On the other hand, it could be a method of choice for time
dependent problems where matrix A does not change much and some stable
value of τ is known. In general, the estimate condest(Ũk) represents a good
compromise delivering predictable behavior of the preconditioner (in terms of
convergence) without the use of trial and error strategy obtaining suitable τ
in a majority of the test cases.
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Figure 1: Convergence of PCG in terms of number of iterations as a function
of sparsity of the preconditioner nnz(Z̃).
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Figure 2: Convergence of PCG in terms of number of iterations as a function
of sparsity of the preconditioner nnz(Z̃).
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